Parity of the Partition Function in Arithmetic Progressions, Ii
نویسندگان
چکیده
Let p(n) denote the ordinary partition function. Subbarao conjectured that in every arithmetic progression r (mod t) there are infinitely many integers N ≡ r (mod t) for which p(N) is even, and infinitely many integers M ≡ r (mod t) for which p(M) is odd. We prove the conjecture for every arithmetic progression whose modulus is a power of 2.
منابع مشابه
On rainbow 4-term arithmetic progressions
{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...
متن کاملThe partition function in arithmetic progressions
In celebration of G.E. Andrews' 60 th birthday.
متن کاملParity of the Partition Function in Arithmetic Progressions
Let p(n) denote the number of partitions of a non-negative integer n. A well-known conjecture asserts that every arithmetic progression contains infinitely many integers M for which p(M) is odd, as well as infinitely many integers N for which p(N) is even (see Subbarao [23]). In this paper we prove that there indeed are infinitely many integers N in every arithmetic progression for which p(N) i...
متن کاملEnumerating Permutations that Avoid Three Term Arithmetic Progressions
It is proved that the number of permutations of the set {1, 2, 3, . . . , n} that avoid three term arithmetic progressions is at most (2.7) n 21 for n ≥ 11 and at each end of any such permutation, at least ⌊ 2 ⌋−6 entries have the same parity.
متن کاملFurstenberg’s proof of long arithmetic progressions: Introduction to Roth’s Theorem
These are the notes for the first of a pair of lectures that will outline a proof given by Hillel Furstenberg [3] for the existence of long arithmetic progressions in sets of integers with positive upper density, a result first proved by Szemerédi [8]. 1 History of long arithmetic progressions The first major result in the theory of long arithmetic progressions was due to van der Waerden in 192...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004